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Simple Derivation of the Thermal Noise
Formula Using Window-Limited Fourier
Transforms and Other Conundrums

Derek Abbott, Member, IEEE, Bruce R. Davis, Member, IEEE, Nicholas J. Phillips, and Kamran Eshraghian

Abstract— A simple theoretical derivation for obtaining the
Johnson thermal noise formula using window-limited Fourier
transforms is presented in detail for the first time, utilizing the
well-known energy theorems. In the literature, a diverse range of
alternative methods already exist, and the pedagogical value of
the Fourier transform approach illustrates useful mathematical
principles, taught at the undergraduate level, naturally high-
lighting a number of physical assumptions that are not always
clearly dealt with. We also proceed to survey a number of
misconceptions, problems, surprises, and conundrums concerning
thermal noise.

I. A BRIEF EARLY HISTORY

HERMAL noise caused by electrons jostled within a

conductor’s lattice is an electrical analogy of Brownian
motion. The random motion of particles in a fluid is named
after R. Brown in recognition of his work in 1827 [1]. Inspired
by discoveries following a historic voyage to Australia [2], he
was led to closely examine the structure of pollen under a
microscope, whereupon he became intrigued by their random
motion in a fluid. Brown was not the first to see such motion,
in fact, many, such as W. F. Gleichen, J. T. Needham, G.-
L. Leclerc, A.-T. Brogniart, and L. Spallanzani [1], [3], had
seen it before except that their ability for correct interpretation
was clouded amidst the ongoing debate on vitalism and
spontaneous generation. Brown opened the door for research in
microscopic fluctuations by being the first to perform a major
systematic experimental analysis convincingly demonstrating
that the motion was not due to bubbles, release of matter,
interaction between the particles themselves or organisms. It
is interesting to note, however, that J. Ingen-Housz in 1784
[4] and then J. Bywater in 1819 [5] independently came to
the conclusion—before Brown—that the motion exists for
inorganic particles. For the next half a century a number of
scientists, including H. V. Regnault, L. C. Wiener [7], Cantoni
and Oehl, and S. Enxer [6] debated whether it was heat,
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light or electrical forces causing the fluctuations. Finally, in
1877, R. J. Delsaulx for the first time suggested impact of
liquid molecules on the particles [8]. Evidence to support
this hypothesis came gradually. The work of L-G. Gouy [9]
showed the motion slowed down in more viscous fluids,
and he took the further step of ascribing fluctuations to
thermal motion of the fluid molecules. F. M. Exner, in
1900, established that the activity decreased with increasing
particle size and decreasing temperature [10]. About this
time, M. R. Smoluchowski began theoretical work on the
subject and published papers in the 1904-1906 period. A.
Einstein independently wrote a number of famous theoretical
papers in 1905-1907. The first theoretical discussion of elec-
trons as Brownian particles [11] came as early as 1912, by
G. L. de Haas-Lorentz,! which inspired G. A. Ising, in 1925,
to fully explain the problem of galvanometer fluctuations [13]
observed by Moll and Burger [14]). With J. J. Thomson’s
discovery of the electron in 1897 and P. K. L. Drude’s classical
model of electrical conduction in terms of an electron gas
in an atomic lattice, both well established by this stage, the
accumulated knowledge was ripe for the understanding of
electrical noise.

J. B. Johnson (Fig. 1), drawing inspiration from W. Schot-
tky’s work [16] of 1918, began in 1925 to characterize the
thermal noise in various conductors via a vacuum tube am-
plifier and published in 1927-28 his well-known formula [15]
for voltage noise, which is equivalent to Einstein’s fluctuation
formula for Brownian motion of charge. Johnson discussed
his results with H. Nyquist (Fig. 2) who, about a month
later, managed to produce a remarkably compact theoretical
derivation based on the thermodynamics of a transmission
line [17].

Because of the equivalence of Johnson’s formula with the
earlier theory (see also [18]), some authors prefer to use the
neutral term thermal noise, whereas as some prefer Johnson
noise or Johnson-Nyquist noise to prevent the confusion be-
tween electrical thermal noise and temperature fluctuations.
Similarly, W. S. Jevons. in 1878 attempted to coin the phrase
pedesis (Gk. ‘jump’) [20] as a neutral expression for Brownian
motion; however, tradition prevailed. For a brief chronology
see Table I.

'She was the eldest daughter of the physicist H. A. Lorentz who married
his assistant W. J. de Haas and has the distinction of being the first woman
in noise theory. In his 1912 series of lectures, H. A. Lorentz expounded her
work within a statistical thermodynamics framework [12].
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Fig. 1. John [Erik] Bertrand Johnson (né Johan Erik Bertrand) was born
in the Carl Johan parish of Goteborg, Sweden, on October 2nd, 1887, and
christened October 7th, 1887. His birth certificate only records his mother
Augusta Mathilda Johansdotter (b. 1866) and his surname derives from his
assumed father Carl Bertrand Johansson. He emigrated to the United States in
1904 and attended Yale University at the same time as Nyquist, producing a
thesis entitled “Total Ionisation of Slow Electrons” in 1917. Johnson was
a pioneer in the study of cathode ray tubes and studied the causes of
noise in vacuum tubes in the 1925-1930 period, working at Bell Telephone
Laboratories until 1952, He then joined the Edison Research Laboratory until
his retirement in 1969. He received a number of awards and medals and held
over 30 patents. A Republican and Presbyterian, Johnson became a US citizen
in 1938. His interests included opera, plant life, and woodwork. He married
Clara Louisa Conger (d. 1961) in 1919 and Ruth Marie Severtson Bowden
in 1961. By his first marriage he had two sons, Bertrand Conger and Alan
William. Bert Johnson died at the age of 83 in Orange, NJ, on November
27, 1970.

II. OVERVIEW OF METHODS IN
THE LITERATURE

The three most common methods found in the pedagog-
ical literature for the derivation of Johnson’s formula are 1)
Nyquist’s original proof [17] considering a transmission line in
thermal equilibrium [21]-[27], 2) a sharply tuned LCR circuit
in thermal equilibrium [28], and 3) the autocorrelation function
technique [26], [29], [30].

Other techniques concentrate on starting from individual
particle motion include the 1) Langevin equation approach
considering particle-mobilities and possible use of the Wiener-
Khintchine theorem [21], [22], 2) kinetic theory derivation
using the simple Drude model picture of conduction in metals
in terms of a classical electron gas [23], [31], 3) extension
of this approach considering the modern Fermi-Dirac gas
model of electron conduction [32], and 4) a further generalized
statistical proof independent of whether particles are classical
or quantum [24].

This remarkable diversity of proofs allows the pedagogue
to draw upon whichever suits the particular course material at
hand. However, none of the cited references present a proof

Fig. 2. Harry Nyquist (né Harry Theodor Nyqvist) was born in the parish of
Stora Kil in the county of Varmland, Sweden, February 7, 1889, the son of
Lars Jonsson Nygvist (b. 1847) and Katrina Eriksdotter (b. 1857). There were
seven children altogether: Elin Teresia, Astrid, Selma, Harry Theodor, Amelie,
Olga Maria, and Axel, none of whom were christened. Harry emigrated to the
United States in 1907 and attended Yale University. His 1917 thesis was on
the Stark effect and, therefore, he would have been aware of the work of
H. A. Lorentz; however, no historian has yet established if Nyquist knew of
Lorentz’s 1912 work [12] on the statistical thermodynamics of noise. Nyquist
began working with the AT&T Company in 1917 and went on to produce
138 patents in the area of telephone and television transmission, as well
as collecting many honors and awards. He arrived at his derivation of the
thermal noise formula about a month after discussions with Johnson. He is also
credited with the Nyquist diagram for defining stable conditions in negative
feedback systems and the Nyquist sampling theory in digital communications.
Harry Nyquist was unique in that he was famous as a theoretician and yet was
a prolific inventor. He retired in 1954, although he continued as a consultant,
and died at the age of 87 on April 4, 1976, in Harlingen, TX.

in terms of Fourier transforms, making use of the well-known
energy theorems. The notion that the energy in a stationary
random process is infinite is partially responsible for this
omission. As pointed out in [21] and [25], the use of Fourier
transforms is nevertheless permissible as the power is finite,
however they do not pursue the matter any further. Therefore,
for the first time, we shall detail a proof using the Fourier
transform energy theorems by considering them in terms of
power. .

Nyquist’s original derivation has been criticized as it only
considers TEM modes and part of the proof involves shorting
out the resistors, leaving an unanswered question of upset
thermal equilibrium. The proof can be modified to overcome
such- objections [18], [26], at the expense of brevity. A
further pedagogical objection is that the Nyquist proof and the
tuned LCR proof explicitly say very little about the statistical
assumptions of the noise process; a list of further objections is
given by [19]. The present alternatives are either lengthy Lévy-
Khintchine-Paley-Wiener type formalisms or kinetic theory.
Thus, our aim is for a simple “engineering proof” based on
Fourier transforms.
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TABLE I
HiSTORY OF FLUCTUATION RESEARCH—A BRIEF EARLY CHRONOLOGY

Name Background b.~d.
Sacharias Jansen Optician, Coin forgery 1588-c.1631
Hans Lipperhey Spectacle maker c.1570-1619
Antoni van Leeuwenhoek Anatomy, Microscopy 1632-1723
Williain Derham Bishop, Physician 1657-1735
Georges Louis Leclerc Naturalist 1707-1788
(Comte de Buffon)
John Turberville Needham Naturalist, Clergyman 1713-1781
Wilhelm F. Naturalist 1717-1783
von Gleichen-Russworm
Lazzaro Spallanzani Naturalist, Jesuit 1729-1799
Jau Ingen-Housz Physics, Medicine 1730-1799
John Bywater Optician, Philos. c.1774-1836
Robert Brown Botany 1773-1858
Henri Victor Regnault Physics, Chemistry 1810-1878
(Ludwig) Christian Wiener ~ Math., Physics, Philos. 1826-1896
Cantoni & Oehl Physics
Sigmund Exner Medicine, Physiol. 1846-1926
(Rene) Joseph Delsaulx Math., Physics, Priest 1828-1891
Williain Stanley Jevons Logic, Economics 1835-1882
Carl Wilhelin von Nageli Botany, Microscopy 1817-1891
Williamn Miller Ord Anatomy 1843-1902
Louis-Georges Gouy General Physics, Optics 1854-1926
(Richard) Meade Bache Physics ¢.1830-1907
Joseph John Thompson Physics 1856-1940
Paul Karl Ludwig Drude Physics 1863-1906
Felix Maria Exner Meteorology 1876-1930
Louis Jean Baptiste Mathematics 1870-1946
Alphonse Bachelier
Jean Baptiste Perrin Physics 1870-1942
Marian Ritter Physics 1872-1917
von Smolan Smoluchowski
Albert Einstein Physics 1879-1955
Geertruida Luberta Physics 1885-1973
de Haas-Lorentz
Hendrik Antoon Lorentz Physics 1853-1928
Walter Schottky Physics 1886-1976
Moll & Burger Physics
Gustav Adolf Ising Physics 1883-1960
(John) Bert(rand) Johnson  Physical electronics 1887-1970
Harry (Theodor) Nyquist Comms. Engineering 1889-1976
Norbert Wiener Mathematics 1894-1964

Origin

Dutch
Dutch
Dutch
English
French

Eng-Bel

German

Italian
Dut-Eng
English
Scottish
French
German
Italian
German
Belgian
English
Swiss
English
French
USA
English
German
German

French

French
Polish

Ger-USA
Dutch

Dutch
German
Dutch
Swedish
Swd-USA
Swd-USA
USA

Observation

Invented compound microscope with father
Independently invented compound microscope
Extensive microscope observations

Observed animacules in pepper water

Observed the motion before Brown

Observed the motion before Brown

Observed the motion before Brown

Observed the motion before Brown

Observed inorganic particle motion

Observed inorganic particle motion

First systematic study of the motion

Thought the motion was due to light

Discarded evaporation as an explanation

Found motion persists after a year

Found smaller particles move quicker

First to suggest molecular impact

Tried to coin the term pedesis

Incorrectly discards molecular impact idea

Argues against electrical cause

Motion more rapid if viscosity lowered

Motion persists after a week in darkness

Discovered the electron

Electron gas model of conduction

Motion increases with temperature

Analyzed fluctuations in Paris stock exchange
first to apply theory to Brownian motion

Began systematic experiments.

First systematic theory began

Began publishing famous theoretical papers
First to discuss electrical noise \

and first woman in noise theory
Statistical thermodynamics framework
Classic paper on electrical noise
Amplified galvanometer fluctuations
Correctly explained galvanometer noise
Began work on circuit noise
Transmission line based derivation

Began mathematical formalism

Date

<1609
<1609

1713

1784
1819
1827
1858
1863
1865
1867
1877
1878
1879
1879
1888
1894
1897
1900
1900
1900

1900
1900

1905
1912

1912
1918
1925
1926
1925
1927
1928

Section III introduces the lumped circuit model, Section IV

discusses windowed Fourier transform concepts, Section V
derives Johnson’s formula, and subsequent sections review a
number of the conundrums, debates and, anomalies surround-
ing thermal noise that are generally not clearly discussed in
the literature.

Consider a resistor in parallel with a capacitor. Any seg-
ment, dx, of this circuit loop consists of some continuous
conducting medium that has some finite resistance, e.g., the
resistor material or the metal wires or the capacitor dielectric.

III. THE LUMPED MODEL
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Fig. 3. Lumped circuit model.

The electrons in these materials will experience random ve-
locity fluctuations, due to thermal energy in the material. This
Brownian-like motion of charge, leads to a voltage fluctuation
across each segment of the circuit. In a given instant of time,
the sum of this ensemble of fluctuations forms a net voltage e,,.
Assumption 1: This circuit is modeled in Fig. 3 by a ran-
dom voltage generator e,(t), a pure capacitor C, a lumped
resistor R, and resistance-free wires. Note that the capacitor
is pure, so there is space between the plates, and we therefore
expect the thermal noise formula to be independent of C.

IV. THE WINDOWED FOURIER TRANSFORM

By definition the Fourier transform I, (w) of the fluctuating
current ¢, (t) through the circuit, as shown in Fig. 3, is given
by

I(w) = /oo in(t)e 7wt dt. )

The Fourier transform is a useful tool for this noise problem,
as undergraduate level students are widely taught convenient
energy theorems—including how to express voltage power
spectral density in terms of the transform. So, the approach that
we present here is to use the transforms to find an expression
for the power spectrum in the noise generator in terms the
power spectrum in the capacitor. This expression can then
be reduced in terms of mean squared voltage fluctuations,
followed by the standard equipartition theory arguments to
finally yield the thermal noise formula.

However, I,(w) can only exist if 4,(¢t) is absolutely inte-
grable, i.e.

oC
/ i (8)] dt < +00.
—_—00 =

Unfortunately, this condition is not satisfied as 4,(¢) is a
randomly varying function of time and does not decay to zero
as t — xoo. The instantaneous values of i,(¢) cannot be
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predicted and this type of function represents an example of
a stochastic process.

A common student error is to ignore the integrability
problem from the outset and to proceed to express I, (w) in
terms of V,,(w), the transform of v,,(¢), by observing that

= d(Cv,) _,
I(w) = / ACn) s,

—0o0

and then integrating by parts

In(w) = Clone™ ]2 — /

—oQ

o0

(—jwC)vpe™ ¢t dt
which yields the “correct” result
In(w) = jwCV,(w)

by making a second mistake in assuming that V,(w) exists
and the square bracket residual vanishes at the limits, which
is clearly unfounded as the limiting values are unknown. At
this point disapproval can be expressed, and the concept of
windowing the function can be introduced. In practice, the
random process can only be observed for a finite window of
time 7, so a dimensionless time window? function W (t,7)
is defined in Fig. 4 and, provided a large 7 is chosen to
minimize statistical sampling error, the windowed version of
(1) becomes.

oo
I(w,7) = / in(t, T)e It dt. 2)
—o0

As the measured voltage v,, is only known over the observation
time 7, it is tempting for the student to define the windowed
current as

in(t,7) = %[Cvn(t)W(tJ)].

Assumption 2: The stochastic process is independent of
where the origin of W (¢, ) is placed on the time axis. This
condition is referred to as stationarity and is reasonable in view
of the observed nature of thermal noise.

This useful property means that (2) is invariant to the
positioning of W (¢, 7). Although the presence of W in (2)
solves the integrability problem, it introduces the artifact of
spectrum leakage. The leakage occurs essentially because
the transform of W, itself, contains a continuous. range of
nonzero frequency components. This can be ignored as we
will eventually be considering just the limiting case as 7 — oo.
Another potential problem is that the differential term appears
to create a discontinuity artifact at the edges of the window,
however by substitution into (2) the student finds that it
eventually cancels, as follows

In(w,7) = / %[CvnW]e_j”t dt 3)

2Some texts, such as [21], replace a random variable z(t) by a “gated”
random variable 7 (t), which is zero outside the time window T. A Fourier
transform is then performed on z7(t). Although, as we show, this does
eventually lead to the correct result—the implicit window is introduced
without discussion and the student is justified in questioning what becomes
of any edge discontinuity effects. For this reason we introduce an explicit
window function W (t,7) as a “book keeping” device to track and monitor
the artifact.
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—/2

Fig. 4. The window function.

/2

by expanding the differential we obtain

don

— —Jjwt —jwt
I (w, ) C’/_oo o We dt+C’/_oo s Vp€ | dt

integrating the left-hand integral by parts
I (w,T) = Clv,We 3t
oo dW . .
- C’/ vn{ﬂe_’“t - ije_]“’t} dt

 dW :
il Jjwt
+ C/ 7 Une dt

—0

where the residual now legitimately vanishes and the superflu-
ous differential window terms cancel, again giving the “correct
result”

I (w,7) = jwCV,(w,T).

Although this attempt has greater merit, as the integrals are
now legitimate, it can be argued that the invoked definition
of windowed current was somewhat ad hoc. Notice as 7 —
00,4, (t,7) does not tend to i, (t) due to delta functions at the
extremities. The artificial introduction of these spikes, from
the outset, fortuitously cancels with the differential window
term during the integration by parts, thereby producing the

“correct” result. Again disapproval must be expressed and the

preferred method now follows.
Consider a windowed version of e,(t) as

en(t, ) = e ()W (2, 7).

We now define the signals v,(¢,7) and ¢,(¢,7) as the
responses of the circuit to e, (t,7). Notice this time that as
T — 00,Un(t,7) — vn(t) and in(t,7) — in(t). We have
in(t,7) = Z[Cuv,(t,7)], thus

In(w,7) = / = 2 [Ovat, e di

—0

and integrating by parts
L(w,7) = Clon(t, T)e=T“H 1 + jwC / on(t, T)e It dt

which reduces to
I(w,7) = jwCVp(w, 7). 4)

Although this result is trivial, it was important to show that
there were no window artifact problems. General discussion
of window problems can be found in [33] and [34]. As
"’;—Z,V = 0|t=+o0 it can be shown for the general case that

d™un(t,T)
dt™

is a windowed or time-limited Fourier pair.

© (jw)"Va(w,T)

V. THE THERMAL NOISE FORMULA

We now proceed to use the (4) result to find the power
spectrum in the capacitor and then produce the celebrated
Johnson formula. Consider the voltages around the loop, in
Fig. 3, by Kirchhoff

vn(t) +in(t)R = en(t)
and viewed from the window W (¢, 7) this becomes
Un(t,T) + i, (t, T)R = en(t, 7).

Notice that by definition, e, (¢, 7) does not contain any delta
function terms and therefore 4,,(¢, 7) and v, (¢, 7) must also be
free of spikes. This can simply be demonstrated by reductio
ad absurdum: if i,(t,7) contained a delta function pair, due
to windowing, then vy, (¢,7) would need an identical pair of
opposing sign to balance the above equation. This would
be impossible, however, as i,(¢,7) would then contain the
second derivative and the reasoning continues inductively ad
infinitum.

Now, taking Fourier transforms we have

Volw, 7) + In(w, 7)R = Ep(w, 7).

substituting in (4) gives

E
Vp= ——— 5
" 1+ jwRC ®)
multiplying by complex conjugates
E,|?
vV, 2 _ ___L__ 6
IVl 1+ (wRC)? ©

By conservation of energy, the total energy in the time domain
must equal that in the frequency domain, therefore

o0 1 o0
2 2
es(t,T)dt = — E (w,7)|* dw.
[ atna= [ B
This is known as the energy theorem or Plancherel’s theorem (a
special case of Parseval’s theorem). Each side of the equation
represents fotal energy and therefore |E.|? represents the
energy density with units of V2s/Hz. Due to the Hermitian
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property of the Fourer transform, |E,[*> is always even
therefore, we can write the one-sided form

o0 1 [e.e]
2 _ 2
/ ea(t,T)dt = 27T/0 2|E,(t,T)|* dw.

—0Q

By definition of temporal average
(¢2) = lim (%),

1 [ )
= lim ~/ e (t,7)dt

T=eo T [_ .
therefore

(e2) = Tllnéoin /000 2|E—"(L:_—’Tﬂi dw
where ‘E: * is called the sample spectrum or periodogram. 1t is

permissible to move the lim,_.., inside the integral provided
the ensemble average is performed first [21, p. 32]. Thus

- 1 [ 2|En|?
ez = — lim AE dw.
21 Jo T—00 T

As we have a random process, the limit would be indeterminate

had the ensemble average not been performed first.
Assumption 3: The process is ergodic, so temporal and

ensemble averages are equivalent, i.e., lim, oo {e2), = e2.

Thus
2 : n
= — lim ————— } dw.
(en) = 5 /0 {71 e M
By definition, the one-sided power spectral density of e, is
2Ea|?

S(w) = lim, 00 therefore we can rewrite (7) as

T >

(€2) = % /O S(w) dw. ®

Assumption 4: The noise spectrum is white, therefore
S(w) = Sp, a constant.

For a practical measuring instrument bandwidth of Aw, (8)
becomes

1
(e2) = %Sko. ©)

n

Using identical arguments for the capacitor voltage, v,, we

have
2 . n
(v2)y = _27r/0 {TIEEO — }dw

and substituting in (6)

(Il 2|,
2 _ n
wn) = o /0 1+ (wRC)?{QEﬁZ‘o P

S /°° dw
o 2 0 1+ (WRC)2

1 So i, 1 ™
= E;Ea[arctan(wRC)]o = '2;50—2?0“
Putting this into (9), to eliminate Sy, gives
2

(e2) = ;C(vi)RAw. (10
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Assumption 5: The system is in equilibrium with its sur-
roundings.

According to equipartition theory, a general dynamical
system in thermal equilibrium has on average a potential
energy of kT/2 for each degree of freedom. One short
hand method for counting up the degrees of freedom in a
linear system is to count the number of independent quadratic
variables in the energy expression. By inspection of (10), we
see that our system takes up energy as C(v2) and, therefore,
it has one degree of freedom, hence

1 9 1
50(%) =5 kT. (11)

Assumption 6: Let us assume the system is classical (ie.,.
no quantum effects) so that the Maxwell-Boltzmann k7" term
holds.

Substituting (11) into (10) finally yields Johnson’s formula
for open circuit noise voltage

(e2) = %kTRAw (12)
= 4kTRAFJ. (13)

This unassuming equation is a source of a number of interest-
ing conundrums and much student consternation. One common
question is “where does the coefficient of four really come
from?” That is, “what is its physical significance?” This can
now be quite easily traced from the above analysis, where the
% clearly comes the one-sided integral of the arctan function.
Hence, it is purely a “geometrical” quantity. If the integral is
modified by substituting the capacitor with a more complex
network, the number of degrees of freedom of the system
changes to always maintain the ubiquitous four.

If the capacitor is replaced by an inductor L, the analysis
can be repeated in the current domain and the generated short
circuit noise current can be shown to be (i2.) = 2£(i2)Aw,
where (i2) is the observed noise current. The system now
takes up energy as 3 L(i2) = kT, therefore \

o AKTAf
(Zsc> - R .

which is the familiar current form for the Johnson noise
formula.

Complete analysis and detailed discussion of the behavior
of (13) and (14) at limiting values of the main variables is
lacking in the pedagogical literature, so we proceed for the
first time to examine, in detail, the main problem areas in the
following sections.

(14)

VI. THE CLASSICAL ENERGY CATASTROPHE

The most obvious problem with (13) is that it classically
predicts infinite energy as f — oo. This is analogous to
the black-body radiation problem where the Rayleigh-Jean’s
law suffers from the so-called ultraviolet catastrophe—the
divergent curve having infinite area over all frequencies.
Anticipating this, Nyquist [17] in 1928 suggested replacing
kT with the one-dimensional form of Planck’s law

hf

ehf/kT _ 1
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which reduces to k7" as f — 0 and rolls off for hf > kT. So
far so good, however, this quantum term predicts zero energy
at T' = 0, which is a violation of the Uncertainty Principle. As
we shall see the solution to this creates a further conundrum.

VII. THE QUANTUM ENERGY CATASTROPHE

During 1911-1912, Planck’s “second theory” produced the
following modification to the quantum term [35]

hf hf _ hf
ehf/_kT- ~1 + —2_ = thOth <§E—f)

The extra hf /2 term is called the zero-point energy (ZPE) and
in this case, at T' = 0, the Uncertainty Principle is not violated.
This creates a further conundrum in that A f /2 is infinite when
integrated over all frequencies, which is an apparent return to
the type of “catastrophe” problem we saw in the classical case.
One can only assume that Nyquist accordingly did not suggest
this form and probably would have been aware of Planck’s
own misgivings concerning the experimental objectivity of
hf/2. The inclusion of hf/2 in standard noise texts only
became popular after 1951 following the classic work of
Callen and Welton [36] that produced the A f/2 ZPE term as
a natural consequence of their generalized treatment of noise
in irreversible systems using perturbation theory.

The solution to the catastrophe problem is that hf/2, in
fact, turns out to be the ground state of a quantum mechanical
oscillator. If n is the quantum number, which is a positive
integer, then the allowed energy states for a quantum oscillator
are (n + $)hf, and thus the ground state is given when
n = 0. As there is no lower energy state than the ground
state, there is no energy level transition available to release
the ZPE. Therefore, it can be argued that hf/2 should be
dropped before integration of the quantum expression. This
procedure is an example of renormalization, which basically
redefines the zero of energy. Renormalization is a significant
area of quantum field theory and is usually presented in a
more formal manner. The problem of renormalization is an
open question in the theory of gravitation where there is the
apparent catastrophe of total energy becoming infinite. For
most laboratory measurements, there is no catastrophe as we
are only interested in energy differences.

The fact that the ground state energy (ZPE) cannot be re-
leased means that texts that quote the Callen and Welton A f /2
term as an observable noise component are not strictly correct.
However, by coincidence it turns out that the mean square
of the zero point fluctuation (ZPF) also has the form hf/2
[37]. The mean square does not vanish with renormalization,
of course, and this ensures the Uncertainty Principle survives
renormalization. The mean square fluctuation is a detectable
quantity and represents the magnitude of the ZPF.

Each mode contributes & f /2 toward the mean square fluctu-
ation and, for an infinite number of frequencies, the magnitude
is infinite. It is considered that this infinity is not fundamental,
since the measurement conditions have not been specified. 1t
can be shown [37] that for any finite observation bandwidth
and volume of space the magnitude of the fluctuations of a
quantum field is finite—if either the bandwidth is infinite or

the measurement is evaluated at a point in space then the
fluctuations become infinite.

VIII. THE STEAK GRILLING DEBATE

In 1982, Grau and Kleen expressed the view that hf/2 is
both unextractable and unobservable, adding their memorable
rejoinder in the Solid-State Electronics journal that 2 f /2 is not
“available for grilling steaks” [38]. Uncannily, about the same
time Koch, Van Harlingen, and Clarke (KVC) published noise
measurements in superconductors reporting to have observed
ZPF [39]. Over the next three to four years a number of
independent superconductor papers followed, all nonchalantly
quoting the KVC interpretation of ZPF as standard. In reply,
Kleen (1987) essentially restated his case pointing out an
unanswered question in the superconductor measurements
[41]. As far as we are aware there has been no published
KVC reply. _

The orthodox position is that the effects of ZPF, such as
in the Casimir effect [41], are observable. ZPF also has an
orthodox status in explaining the observations of Mullikan
[42], Lamb [43], and the nature of liquid helium {44]. On
the other hand, consensus is not total as the school of Kleen
has some support e.g., [26, p. 173] and [45], the commonly
supposed link between spontaneous emission and ZPF has
been criticized [46] and the overall understanding of ZPF is
also questioned, as expressed, for example, in the following
quote [47].

“The obvious question, then, is whether the zero-point
energy and the vacuum fluctuations are one and the
same thing. If they are, why is it that the former
can be eliminated from the theory? The answer is
not yet clear, and a deeper significance has yet to be
discovered. Therefore, we will adopt the view that the
zero-point energies are to be formally removed from
the theory..., and all physical effects of the type...
discussed are to be ascribed to quantum fluctuations of
the vacuum.... It must be admitted that the vacuum
is not completely understood, neither physically nor
philosophically. Whether or not the vacuum fluctuations
are intimately related to the (unobservable) zero-point
energy remains an open question.”

where the expression “vacuum fluctuations™ is an alternative
term for ZPF. The view that ZPF cannot give rise to a
detectable noise power itself, but can indirectly modulate or
induce a detectable noise power has been recently expounded
[48].

As for grilling steaks, the debate still sizzles but has shifted
away from electrical noise theory. Controversial attempts to
harness ZPE are under way using the concept of system self-
organization [49] and presupposing the idea that the ground
state is not the actual source of energy but a “pipeline”
into some universal background source [50]. In an enterpris-
ing decade where there have been controversial attempts to
consider superluminal velocity [51] and quantum information
theory (promising two bits of information from one physical
bit [52] and a form of teleportation [53]), there is no doubt that
ZPE research will thrive. It remains to be seen what concrete
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Fig. 5. Quantum equipartition energy versus frequency for 300, 77, and 4 K. The line represents the hf/2 term plotted separately.

results are produced and, if any, what the implications are
to noise theory. Until further evidence, the quantum zero-
field should be regarded as a conservative field as far as the
extraction of energy is concerned.

IX. QUANTUM CUT-OFF EXPERIMENTAL STATUS

Fig. 5 shows a theoretical plot of the guantum term for
different temperatures. The hf/2 term is plotted to illustrate
that at normal working frequencies and temperatures it is
vanishingly small, so for these conditions it can be neglected
regardless of the status of debate. It can be seen from the
Fig. 5 plot that experimental verification of the quantum cut-
off point for electrical noise is rather difficult due to the
TeraHertz frequencies. If the temperature is reduced, to reduce
the cut-off frequency, we see that the maximum energy of the
curves falls, thus making. noise detection more difficult. In
1981, van der Ziel [54] proposed to make measurements in
this region at 100 GHz using Hanbury-Brown Twiss circuits;
unfortunately, this research effort was never completed. The
only curves we have today, for electrical noise, appear to be
those of the type of KVC, which show no cut-off due to ZPF
becoming significant. Therefore, as far as we are aware, there
are to this day no measurements that directly demonstrate the
quantum cut-off for electrical thermal noise. Although the cut-
off region, for electrical noise, has so far been obscured by ZPF
it may become possible in the future to view at least part of
this region, without violation of the Uncertainty Principle, if
somehow the concept of squeezed states can be successfully
employed for the electrical case (e.g., [55]).

X. MACDONALD’S OBJECTION

In 1962, MacDonald raised an interesting objection [56]
concerning the quantum term. He correctly demonstrated that
for hf > kT the time-dependence characteristic of a reversible

system is exhibited. For Af < kT he showed that the system
is irreversible, as expected. Given that an electrical resistor is
regarded as a dissipative irreversible system, a transition to a
reversible regime for Af > k7T caused MacDonald to doubt
the validity of the quantum term altogether. ,
The transition to the reversible regime can be simply thought
of as taking place because at high frequencies, hf > kT, i.e.,
for time intervals less than h/kT, the period is too short to
achieve thermal equilibrium. As noise is a manifestation of
a dissipative system maintaining thermal equilibrium, if the

“intervals are too short, then the dissipative process must roll off

at these higher frequencies. This is precisely what is predicted
by the quantum term.

Dissipation can be thought of as a process that eventually
brings classical particles, in a closed system, - to- rest. This
situation is not permissible for quantum particles as it would be
a violation of the Uncertainty Principle. Dissipation does not
play a role in microscopic description of quantum particles.
It is a macroscopic concept whose relation to the quantum
microscopic description is purely a statistical one in the
classical limit. The “sleight of hand” that turns nondissipative
equations of motion into dissipative ones in the classical limit
is hidden within the equation boundary conditions. For a more
mathematical discussion see [57]. From the modern viewpoint,
quantum Brownian motion (QBM) is now a major discipline
area [58] and MacDonald’s objection is therefore clearly out-
moded.

XI. THE CASE OF LIMITING R. and C

Remembering that the Johnson expression for (e2) is the
case for an open circuit resistor, we now systematically illus-
trate, for the first time, how to examine the output voltage,
current, and charge fluctuations ((v2),(s2) and (g2)) for the
various limiting cases of R and C. The results are summarized
in Table IL ’
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TABLE 1II
THERMAL NOISE OVER INF]NITE BANDWIDTH FOR DIFFERENT CAsSEs oF LimitinGg R anp C

Classical Quantum
(v2) (i%) (a2) (v3) (i2) (qn)

R—0  Shorted Cap. 0 0 0 0 0 0

R — oo Open Cap. £ (do) 0 ETC (de) | £ (do) 0 kTC (dc)

C — oo Shorted Res. 0 00 00 0 s2g (mkT)? 00

C—0  Open Res. oo 0 0 2B(1kT)? 0 0
A. The Case of Finite R and C and f — oo we observe that

The voltage noise detected across the capacitor is simply
*  4kTRd kT im {1 rsenso) = é(f)
(02) = / _ AkTR4f kT Roo | T+ (20 fRC)?
" o 14 (2rfRC)? C

which normally causes some surprise as the k7'/C term is Dby applying the delta function identity 5(0l$) é(z)/ o

" independent of R, which is the source of the noise! This
is easily explained by observing that as R increases, the
corresponding increase in noise is exactly canceled by a

. decrease in circuit bandwidth o< 1/R. The circuit current noise

is given by
(i) = /‘X’ (4kT/R)(27 f RC)*df _
" 0 1+ (2rfRC)?
and this divergent result is a consequence of classical theory
breakdown.

B. The Case of Finite f, R and C

For a finite frequency band A f, taken from zero, the voltage
noise becomes

(v2) = ?—g arctan(2r AfRC)
_ kT  AKTRAf

T C (Bm/B.)?

by expanding arctan for B,,>>B., where the measurement
bandwidth B,, = (x/2)Af and the circuit bandwidth
B.=1/(4RC). This remarkable result is the difference
between the familiar k7'/C noise and the open circuit noise
divided by the square of the ratio of the bandwidths. The
analogous expression for the current noise can be shown to be

5, AKTAS B.\?\ kT
(in) ~ =5 (1+(Bm>)—

CR?
which goes to infinity for Af — oo, as expected for the
classical theory. The solutions using the quantum term for
finite R and C involve tedious integrals and are not that
instructive; for such a treatment refer to [59].

C. Open Circuit Capacitor: Finite C, R — oo, f — o
Using the well-known delta function approximation of the
form
1 . T
ﬂ1—>°0{1+0£21‘2}

§(ax) = = lim

Therefore

)] = 5/_ 4kT6<f)df _ kT

where the integral limits are taken between +oo as §(f) is
centered about the f = 0 axis. The factor of 1/2 is introduced
as we are dealing with frequencies in the positive domain—this
is justified as the function is symmetrical about the f = 0
axis. This surprising result of £7'/C has to be interpreted in
terms of a dc voltage across the capacitor, because as R — oo
the circuit bandwidth— 0. Therefore, the classical formulation
predicts that an ensemble of capacitors will, on average,
display a dc voltage of /kT/C across their terminals. The
source of the dc voltage can be thought of as the voltage that
is sampled by the capacitor at the moment the finite resistor is
removed. Note that substitution of the quantum term into the
above integral also produces the same result.

This explanation in terms of a dc voltage is much more
satisfactory than that of [59], which considers it as a time
varying noise voltage and, consequently, proposes highly
ingenious ways of making a pure capacitor dissipative! This
is clearly unnecessary as any dissipative proposal for the
capacitor can be modeled by an equivalent resistor.

Multiplication by C? gives the well-known result {g2) =
kT C used for analyzing noise on switched capacitor circuits.
For example, a 1-pF capacitor will have 64 pV ., across its
terminals, or in terms of charge, this is 400 rms electrons.

D. Short Circuit Capacitor: Finite C, R — 0, f — o0

As R — 0, all the integrals, classical and quantum, trivially
g0 to zero. This is expected as R is the source of the noise.

E. Open Circuit Resistor: Finite R, C — 0, f — oo

For the classical case (v2) — oo as expected due to
breakdown of the theory. The integrals for (i2) and (g2)
trivially tend to zero. This is expected as there is no circuit
loop for current to flow. The quantum case for the open circuit
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resistor, where I" is the mathematical gamma function and ¢
is the Weierstrass zeta function, now becomes [60]

®  4ARh ET\?
o= [ -jm—ﬁ}ﬂm(—f) r(2)¢(2)

which implies that the open circuit thermal noise voltage
across a 1 M£ resistor, at room temperature, viewed with an
instrument of infinite input impedance and infinite bandwidth
(or at least >kT'/h = 6250 GHz) with no parasitic capacitance
present is 0.41 V5! This is rather large, but fortunately these
ideal conditions are unrealisable in practice. It also assumes
that the result is directly observable and not swamped by hf /2
quantum noise.

F. Short Circuit Resistor: Finite R, C — oo, f — 0

For the classical case, the voltage integral goes to zero
whereas current and charge go to infinity. Zero voltage is
expected as the terminals are shorted and infinite current in the
loop is a breakdown of the classical theory. For the quantum
case for current we have

) > (4hf/R)d, 2

which is finite as expected. However, the quantum integral for
charge turns out to be divergent, giving infinite charge. Notice
we now have a random walk type nonstationary process.
The infinite result may be seen, not as a breakdown in the
classical or quantum theory, but due to the artificial construct
of theoretical infinite capacitance. An infinite capacitor can be
thought of as an infinite store of charge—this never occurs
in practice, which is another way of saying that there is no
such thing as a perfect short circuit. Notice that in the limit
as €' — oo, the capacitor becomes simultaneously an infinite
store of charge and a perfect short. This can be resolved by
thinking of C' — oo as being modeled by an ideal voltage
source.

XII.. POWER IN A MATCHED LOAD

If a resistor R develops an open circuit noise voltage of
4kTRAf, the power delivered to an equal load resistor is

G O PN

— (2\P —
P= ()R iR

" (2R
This causes some surprise as P appears to be independent of
R, which is the source! To understand this, let us consider an
arbitrary load Rj, so the power now becomes

Ry

So, we see that for small R, the noise term is small and
therefore the delivered power P is small; whereas for large
R the potential divider term becomes small, so the delivered
power is still small. Maximum power transfer occurs when

j—g = 0, which trivially yields R = Ry, hence there is balance
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achieved between noise generation and the potential divider
effect. )

This analysis can, of course, be reproduced by considering a
resistor R in parallel with a current noise source of 4kTAf/R.
A common student error is to mechanically proceed the
analysis with the power, P = (i2)Ry, as before: This, of
course, leads to the wrong result. For the case of a current
source we must put P = (v2)/Ry, giving

 Rr  (R+Rp)?
_4kTAf R%R;,

TR (R+RL?
Ry,

=4kTRAf s

f(R+RL)2

which is the same result as before.

Another curious feature of the P = kKTAf formula is
that it appears to imply that for large observation times the
power transfer tends to zero, whereas for small times the
power transfer increases. This is simply explained by noting
that the application of the thermal noise formula presumes
that both resistors are in thermal equilibrium. Hence, for long
observation times we expect the net power transfer to be
zero; otherwise a resistor would heat up and escape thermal
equilibrinm. However, for a small “snapshot” of time, as the
fluctuations in each resistor are uncorrelated, there must be an
instantaneous transfer of power. The momentary transfers of
power back and forth between the resistors, on average, add to
zero. This also explains why energy cannot be harnessed from
the thermal noise in a resistor, cf. Brillouin’s Rectifier Para-
dox [61], Penfield’s Motor Paradox [62], Feynman’s Rachet
Paradox [63], Panse’s Radiation Paradox [64], and Bogner’s
Microwave Isolator Paradox [65]. Analogous arguments are
used by some authors [21] to assert that energy cannot be
extracted from ZPF, however this has been disputed [66]. The
apparent infinite power as the snapshot of time approaches
zero is, of course, due to breakdown of the classical k7" term.

XIII. DISTRIBUTED RC

Until this point, our analysis has only considered a lumped
circuit model. In a given practical case, a resistor may have
some distributed parasitic capacitance and thus it is instructive
to analyze the noise in a distributed RC line. From standard
transmission line theory, the impedance looking into an RC
line with the other end shorted is

/| R
7 = j .
70l tanh+/jwRC

The voltage noise seen across the open circuit terminals is
found by simply inserting R(Z) into the Johnson noise formula
[30], [67]. Therefore

(v2) = 4kTR(Z)Af
R sinh /4w fRC + sin /47 f RC
Viar fRC cosh /4n fRC + cos/4r fRC

= 4kTASf
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Thermal Noise in a Distributed RC Line
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Fig. 6. Noise in distributed RC line. Chained line: short circuit load. Solid line: matched load. Dashed line: short circuit load with Planck term. R = 1 M{Q,
C = 1 pF. All curves plateau at 1.66 x 10714 V2 /Hz, except for the matched load case that increases due to noise in the load. For reference, the

simple lumped RC case is shown as a dotted line.

which reduces to 4kT'RAf for small f, as expected. This
is plotted in Fig. 6 with the simple RC case for comparison,
showing that at low frequencies they are equal, but at high
frequencies the simple RC curve rolls off faster. The quantum
curve is included to show that there is a physical limit to
the slow roll-off in the distributed case. Finally, the case for a
transmission line with a matched load is also plotted to clearly
show that this option does not model a discrete resistor with
distributed parasitic capacitance. The curious phenomenon of
the noise increasing, for low frequencies, in the matched load
case is a manifestation of noise in the load (which is physically
unrealisable in this case) and not an anomaly in the line.

XIV. CONCLUSION

A brief history of the events leading up to the discovery
of thermal noise has been covered, with some biographical
information on Johnson and Nyquist, as these details have
not been readily accessible in the pedagogical texts or ency-
clopedias and in some cases are misleading or incorrect. We
have presented, for the first time, a simple “‘engineering proof”
of the thermal noise formula, based on Fourier transforms,
that avoids lengthy kinetic theory or Wiener formalisms and
illustrates the physical assumptions more clearly than the
Nyquist proof. We have also surveyed a number of debates,
misconceptions, conundrums, and surprises regarding thermal
noise that traditionally cause student consternation.
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